21.02.2015 Fizyka Szkoła podstawowa rozwiązane • sprawdzone przez eksperta 1. Oblicz ile waży: a) 20 cm wodoru o gęstości d = 0,09 g/dm b) 10 cm tlenu o d
${21}^{-3}=?$${21}^{-3}$$\dfrac{1}{{21}^{3}}$$\dfrac{1}{9261}$$
Zad 6 oblicz (skracaj jeśli to możliwe) A) 3/7 x 5/9 = 5/21 4/3 x 7/16 = 7/12 6/11 x 5/9 = 10/33 B) 8/21 x 7/12 = 8/3 * 1/12 = 2/9 5/6 x 9/20 = 1/6 * 9/4 = 1/2 * 3/4 = 3/8
Sumę pierwszych \(n\) wyrazów ciągu arytmetycznego możemy obliczyć ze wzoru: \[S_n=\frac{a_1+a_n}{2}\cdot n\] albo ze wzoru: \[S_n=\frac{2a_1+(n-1)r}{2}\cdot n\] Do obliczenia sumy ciągu arytmetycznego od wyrazu \(k\)-tego do wyrazu \(n\)-tego, można skorzystać ze wzoru: \[S_n^k=\frac{a_k+a_n}{2}\cdot (n-k+1)\] Oblicz sumę \(20\) pierwszych wyrazów ciągu arytmetycznego o wzorze ogólnym \(a_n = 3n + 1\). Obliczamy pierwszy wyraz ciągu: \[a_1 = 3\cdot 1 + 1 = 4\] Teraz obliczamy \(20\) wyraz ciągu: \[a_{20} = 3\cdot 20 + 1 = 61\] Zatem szukana suma wynosi: \[S_n=\frac{a_1+a_{20}}{2}\cdot 20=\frac{4+61}{2}\cdot 20=65\cdot 10=650\] Szybka nawigacja do zadania numer: 5 10 15 20 25 30 .Oblicz sumę \(12\) początkowych wyrazów ciągu \(a_n=4n+1\). \(20\) początkowych wyrazów ciągu \(a_n=3(n-1)+2\). \(15\) początkowych wyrazów ciągu \(a_n=1+\frac{n}{2}\). \(10\) początkowych wyrazów ciągu arytmetycznego o pierwszym wyrazie równym \(-3\) i różnicy \(5\). Pierwszy wyraz ciągu arytmetycznego jest równy \(3\), czwarty wyraz tego ciągu jest równy \(15\). Oblicz sumę sześciu początkowych wyrazów tego ciągu.\(78\)W ciągu arytmetycznym \((a_n)\) dane są \(a_1=2\) i \(a_2=4\). Suma dziesięciu początkowych wyrazów tego ciągu jest równa A.\( 30 \) B.\( 110 \) C.\( 220 \) D.\( 2046 \) BDany jest ciąg arytmetyczny \((a_n)\) dla którego suma pierwszych \(n\) wyrazów wyraża się wzorem \(S_n=\frac{3}{2}n^2-\frac{11}{2}n\). Wówczas wartość wyrażenia \(\frac{a_5+a_7}{2}\) jest równa A.\( 11 \) B.\( \frac{11}{2} \) C.\( \frac{3}{2} \) D.\( 3 \) ASuma dziesięciu początkowych wyrazów ciągu arytmetycznego \( (a_n) \) jest równa \( 35 \). Pierwszy wyraz \( a_1 \) tego ciągu jest równy \( 3 \). Wtedy A.\(a_{10}=\frac{7}{2} \) B.\(a_{10}=4 \) C.\(a_{10}=\frac{32}{5} \) D.\(a_{10}=32 \) BW ciągu arytmetycznym \((a_n)\), określonym dla \(n\ge1\), dane są dwa wyrazy: \(a_1 = 7\) i \(a_8 = -49\). Suma ośmiu początkowych wyrazów tego ciągu jest równa A.\( -168 \) B.\( -189 \) C.\( -21 \) D.\( -42 \) \(-168\)W ciągu arytmetycznym \((a_n)\), określonym dla \(n\ge1\), dane są dwa wyrazy: \(a_1=-11\) i \(a_9=5\). Suma dziewięciu początkowych wyrazów tego ciągu jest równa A.\( -24 \) B.\( -27 \) C.\( -16 \) D.\( -18 \) BSzósty wyraz ciągu arytmetycznego \((a_n)\) jest równy zero. Suma jedenastu wyrazów tego ciągu ma wartość: A.\( 0 \) B.\( 5 \) C.\( 11 \) D.\( -11 \) ADwunasty wyraz ciągu arytmetycznego \((a_n)\), określonego dla \(n \ge 1\), jest równy \(30\), a suma jego dwunastu początkowych wyrazów jest równa \(162\). Oblicz pierwszy wyraz tego ciągu. \(a_1 = -3\)W ciągu arytmetycznym \((a_1,a_2,...,a_{39},a_{40})\) suma wyrazów tego ciągu o numerach parzystych jest równa \(1340\), a suma wyrazów ciągu o numerach nieparzystych jest równa \(1400\). Wyznacz ostatni wyraz tego ciągu arytmetycznego.\(10\)W ciągu arytmetycznym \((a_n)\) suma trzydziestu początkowych wyrazów tego ciągu jest równa \(1245\) oraz \(a_1=-2\). Wtedy A. \(a_{30}=81\) B. \(a_{30}=85\) C. \(a_{30}=175\) D. \(a_{30}=1247\) BW ciągu arytmetycznym \(a_1=3\) oraz \(a_{20}=7\). Wtedy suma \(S_{20}= a_1+a_2+...+a_{19}+ a_{20}\) jest równa A.\( 95 \) B.\( 200 \) C.\( 230 \) D.\( 100 \) DPiąty wyraz ciągu arytmetycznego jest równy \(26\), a suma pięciu początkowych wyrazów tego ciągu jest równa \(70\). Oblicz pierwszy wyraz tego ciągu.\(a_1=2\)Dane są dwa ciągi arytmetyczne: \(1, 4, 7,…\) oraz \(20, 21, 22,…\) Zsumowano \(n\) początkowych wyrazów pierwszego ciągu i \(n\) początkowych wyrazów drugiego ciągu. Okazało się, że otrzymano równe sumy. Wyznacz \(n\).W ciągu arytmetycznym \(a_n\) dla \(n\ge 1\), \(a_1=8\) oraz \(a_1+a_2+a_3=33\). Wtedy suma \(a_4+a_5+a_6\) jest równa A.\( 44 \) B.\( 60 \) C.\( 69 \) D.\( 93 \) BSuma \(n\) początkowych wyrazów ciągu arytmetycznego \((a_n)\) dana jest wzorem \(S_n=\frac{n^2-25n}{4}\), gdzie \(n\ge 1\). Różnica ciągu arytmetycznego \((b_n)\) jest równa \(\frac{3}{2}\) oraz jego piąty wyraz jest równy \(8\). Wyznacz sumę \(17\) początkowych wyrazów ciągu arytmetycznego \((c_n)\), wiedząc, że \(c_n=2b_n-a_8\), gdzie \(n\ge 1\).\(518\frac{1}{2}\)Suma \(23\) początkowych wyrazów ciągu arytmetycznego \((a_n)\) dla \(n\ge 1\) jest równa \(1564\). Oblicz średnią arytmetyczną wyrazów \(a_3\) i \(a_{21}\).\(68\)W skończonym ciągu arytmetycznym \((a_n)\) pierwszy wyraz \(a_1\) jest równy \(7\) oraz ostatni wyraz \(a_n\) jest równy \(89\). Suma wszystkich wyrazów tego ciągu jest równa \(2016\). Oblicz, ile wyrazów ma ten ciąg.\(42\)Dla każdej liczby całkowitej dodatniej \(n\) suma \(n\) początkowych wyrazów ciągu arytmetycznego \((a_n)\) jest określona wzorem \(S_n=2n^2+n\). Wtedy wyraz \(a_2\) jest równy A.\( 3 \) B.\( 6 \) C.\( 7 \) D.\( 10 \) CCiąg arytmetyczny \((a_n)\) określony jest wzorem \(a_n=2016-3n\), dla \(n\ge 1\). Oblicz sumę wszystkich dodatnich wyrazów tego ciągu.\(676368\)W ciągu arytmetycznym \((a_n)\), określonym dla \(n\ge 1\), dane są: wyraz \(a_1=8\) i suma trzech początkowych wyrazów tego ciągu \(S_3=33\). Oblicz różnicę: \(a_{16}-a_{13}\).\(9\)Suma trzydziestu początkowych wyrazów ciągu arytmetycznego \((a_n)\), określonego dla \(n\ge 1\), jest równa \(30\). Ponadto \(a_{30}=30\). Oblicz różnicę tego ciągu.\(r=2\)Suma \(n\) początkowych wyrazów ciągu arytmetycznego wyraża się wzorem \(S_n=3n^2+4n\). Piąty wyraz tego ciągu jest równy: A.\( 45 \) B.\( 31 \) C.\( 21 \) D.\( 11 \) \[a_5=?\]BW ciągu arytmetycznym \((a_n)\), określonym dla liczb naturalnych \(n\ge1\), wyraz szósty jest liczbą dwa razy większą od wyrazu piątego, a suma dziesięciu początkowych wyrazów tego ciągu jest równa \(S_{10}=\frac{15}{4}\). Oblicz wyraz pierwszy oraz różnicę tego ciągu. \(a_1=-\frac{3}{4}\), \(r=\frac{1}{4}\)Dziewiąty wyraz ciągu arytmetycznego \((a_n)\), określonego dla \(n \ge 1\), jest równy \(34\), a suma jego ośmiu początkowych wyrazów jest równa \(110\). Oblicz pierwszy wyraz i różnicę tego ciągu.\(a_1 = -2\), \(r = 4\frac{1}{2}\)W pewnym ciągu arytmetycznym suma dwóch pierwszych wyrazów jest równa \(5\frac{1}{2}\), a suma trzech pierwszych wyrazów jest równa \(12\). Pierwszy wyraz tego ciągu jest równy: A.\( 1\frac{1}{2} \) B.\( 4\frac{1}{2} \) C.\( -\frac{1}{2} \) D.\( 1 \) AWyznacz liczbę \(n\) wyrazów ciągu arytmetycznego, mając dane: a) \(S_n=407,\ \ a_1=62,\ \ a_n=12;\) b) \(S_n=1016{,}5,\ \ a_1=22,\ \ a_n=85;\) c) \(S_n=420,\ \ a_1=7,\ \ r=3;\) d) \(S_n=204,\ \ r=6,\ \ a_n=49;\) e) \(S_n=578,\ \ a_1=58,\ \ r=-3;\) f) \(S_n=456,\ \ r=-12,\ \ a_n=15;\) Wyznacz różnicę \(r\) wyrazów ciągu arytmetycznego, mając dane: a) \(S_n=518,\ \ a_1=50,\ \ n=14;\) b) \(S_n=728,\ \ n=16,\ \ a_n=63;\) c) \(S_n=1675,\ \ n=25,\ \ a_n=1;\) d) \(S_n=2241,\ \ n=27,\ \ a_n=148;\) Znajdź sumę trzydziestu kolejnych liczb będących wielokrotnościami \(9\) (zaczynając od \(9\)).\(4185\)Znajdź sumę pięćdziesięciu kolejnych liczb będących wielokrotnościami \(12\) (zaczynając od \(24\)).\(15900\)Znajdź sumę: a) wszystkich liczb całkowitych od \(0\) do \(150\) włącznie b) wszystkich liczb parzystych od \(0\) do \(150\) włącznie c) wszystkich liczb nieparzystych od \(0\) do \(150\) Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez \(7\) dają resztę \(2\), wynosi \(43950\). Wyznacz najmniejszą i największą z tych wzór na \(n\)-ty wyraz ciągu, którego suma \(n\) początkowych wyrazów wyraża się wzorem: d) \(S_n=\frac{1}{2}n-\frac{1}{4}n^2;\) Wykaż, że każdy z tych ciągów jest ciągiem arytmetycznym.
Oblicz zamieniając ułamki zwykle na dziesiętne 5,3+2/5 7,9-2,3/20 B oblicz zamieniając ułamki dziesiętne na zwykłe … Walony321 Walony321 23.09.2017
Oblicz 20/21 - 3/1 = 5/12 + 2 3/8 = 25/3 x 9/35 = 5/16 : 2 1/12 = 5/6 + [-0,75] = 3 1/25 - 0,… Natychmiastowa odpowiedź na Twoje pytanie.
(1) IRM 20.1.1.1.2(2) Added IRM 20.1.13, Material Advisor and Reportable Transactions Penalties, to the bottom of the table and moved IRC 6707, 6707A and 6708 from IRM 20.1.6 to IRM 20.1.13. (2) IRM 20.1.1.1.3 Revised language in (5) based on guidance from the Division Counsel/Associate Chief Counsel (National Taxpayer Advocate Program) and
po dwukrotnej obniżce ceny napierw o 15% a następnie o 20% towar kosztowal 1020zl po dwóch promocjach pomocy fast Czy Wartsosc liczbowa wyrażenia (x+11) : (11 - x) można obliczyć dla dowolnej liczby x
svZ6j. b2u0hyjw3s.pages.dev/53b2u0hyjw3s.pages.dev/63b2u0hyjw3s.pages.dev/83b2u0hyjw3s.pages.dev/171b2u0hyjw3s.pages.dev/398b2u0hyjw3s.pages.dev/235b2u0hyjw3s.pages.dev/394b2u0hyjw3s.pages.dev/167b2u0hyjw3s.pages.dev/70
oblicz 20 21 1 3